228 research outputs found

    Association of influenza infection and vaccination with cardiac biomarkers and left ventricular ejection fraction in patients with acute myocardial infarction

    Get PDF
    Aims: The aim of this study was to examine the association of influenza infection and vaccination with extent of cardiac damage during acute myocardial infarctions (AMIs) as measured by serum biomarkers and left ventricular ejection function (LVEF) in patients. Methods: Post-hoc analysis was performed on data from a prospective case-control study of influenza and AMI, conducted in a tertiary care hospital in Sydney, Australia. We included 275 cases of AMI, aged ≥ 40 years admitted to the cardiology during the study period. Results: Mean and median CK-MB levels were significantly higher among unvaccinated group compared to vaccinated group (p value < 0.05). Troponin levels were also higher among unvaccinated group compared to vaccinated group; although not statistically significant. Troponin and CKMB values were not statistically different among influenza positive cases and influenza negative cases. Large size infarcts were less frequent among vaccinated cases compared to unvaccinated cases (25% vs 35.5%) and were more frequent among influenza positive cases compared to influenza negative cases (35.3% vs 31.5%), however differences were not statistically significant. LVEF was lower among vaccinated cases compared to unvaccinated cases (62.5% vs. 52.8%) and influenza positive cases compared to influenza negative cases (58.8% vs 55.4), however differences were not significant. Conclusion: Lower CKMB levels among vaccinated groups showed that influenza vaccine may have a protective effect against large infarcts, therefore influenza vaccination should be recommended for high risk groups. The study suggests an association of larger infarcts with influenza infection, but larger studies are required to confirm this

    The Maker\u27s CubeSat: Increasing Student-lab Capabilities in the Design, Integration & Test of the Alpha CubeSat

    Get PDF
    Alpha is a 1U CubeSat developed at Cornell University that deploys a ChipSat-equipped free-flying light sail into LEO. While the payload is rather unique, the spacecraft that deploys it is designed to be adaptable and scalable to future student-led missions. Technology demonstrations include a 3D-printed chassis, entirely commercial off-the-shelf (COTS) electronics, an Iridium modem that bypasses the need for ground-station hardware, and magnetorquer-only spin-stabilization and pointing. This paper details the driving factors behind Alpha’s novel architecture with a focus on the affordable methods developed for design verification and optimization. Drawing inspiration from the maker community, the lab acquired a suite of tools that dramatically increased in-house integration and test capabilities. Lessons are shared from training multiple generations of students on these tools, along with the best-practices developed for student assembly of flight hardware

    Using species A rotavirus reverse genetics to engineer chimeric viruses expressing SARS-CoV-2 spike epitopes:Heterologous viral peptide expression by rotavirus A

    Get PDF
    Species A rotavirus (RVA) vaccines based on live attenuated viruses are used worldwide in humans. The recent establishment of a reverse genetics system for rotoviruses (RVs) has opened the possibility of engineering chimeric viruses expressing heterologous peptides from other viral or microbial species in order to develop polyvalent vaccines. We tested the feasibility of this concept by two approaches. First, we inserted short SARS-CoV-2 spike peptides into the hypervariable region of the simian RV SA11 strain viral protein (VP) 4. Second, we fused the receptor binding domain (RBD) of the SARS-CoV-2 spike protein, or the shorter receptor binding motif (RBM) nested within the RBD, to the C terminus of nonstructural protein (NSP) 3 of the bovine RV RF strain, with or without an intervening Thosea asigna virus 2A (T2A) peptide. Mutating the hypervariable region of SA11 VP4 impeded viral replication, and for these mutants, no cross-reactivity with spike antibodies was detected. To rescue NSP3 mutants, we established a plasmid-based reverse genetics system for the bovine RV RF strain. Except for the RBD mutant that demonstrated a rescue defect, all NSP3 mutants delivered endpoint infectivity titers and exhibited replication kinetics comparable to that of the wild-type virus. In ELISAs, cell lysates of an NSP3 mutant expressing the RBD peptide showed cross-reactivity with a SARS-CoV-2 RBD antibody. 3D bovine gut enteroids were susceptible to infection by all NSP3 mutants, but cross-reactivity with SARS-CoV-2 RBD antibody was only detected for the RBM mutant. The tolerance of large SARS-CoV-2 peptide insertions at the C terminus of NSP3 in the presence of T2A element highlights the potential of this approach for the development of vaccine vectors targeting multiple enteric pathogens simultaneously. IMPORTANCE We explored the use of rotaviruses (RVs) to express heterologous peptides, using SARS-CoV-2 as an example. Small SARS-CoV-2 peptide insertions (<34 amino acids) into the hypervariable region of the viral protein 4 (VP4) of RV SA11 strain resulted in reduced viral titer and replication, demonstrating a limited tolerance for peptide insertions at this site. To test the RV RF strain for its tolerance for peptide insertions, we constructed a reverse genetics system. NSP3 was C-terminally tagged with SARS-CoV-2 spike peptides of up to 193 amino acids in length. With a T2A-separated 193 amino acid tag on NSP3, there was no significant effect on the viral rescue efficiency, endpoint titer, and replication kinetics. Tagged NSP3 elicited cross-reactivity with SARS-CoV-2 spike antibodies in ELISA. We highlight the potential for development of RV vaccine vectors targeting multiple enteric pathogens simultaneously

    Vascular Permeability Factor/Vascular Endothelial Growth Factor Induces Lymphangiogenesis as well as Angiogenesis

    Get PDF
    Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF, VEGF-A) is a multifunctional cytokine with important roles in pathological angiogenesis. Using an adenoviral vector engineered to express murine VEGF-A164, we previously investigated the steps and mechanisms by which this cytokine induced the formation of new blood vessels in adult immunodeficient mice and demonstrated that the newly formed blood vessels closely resembled those found in VEGF-A–expressing tumors. We now report that, in addition to inducing angiogenesis, VEGF-A164 also induces a strong lymphangiogenic response. This finding was unanticipated because lymphangiogenesis has been thought to be mediated by other members of the VPF/VEGF family, namely, VEGF-C and VEGF-D. The new “giant” lymphatics generated by VEGF-A164 were structurally and functionally abnormal: greatly enlarged with incompetent valves, sluggish flow, and delayed lymph clearance. They closely resembled the large lymphatics found in lymphangiomas/lymphatic malformations, perhaps implicating VEGF-A in the pathogenesis of these lesions. Whereas the angiogenic response was maintained only as long as VEGF-A was expressed, giant lymphatics, once formed, became VEGF-A independent and persisted indefinitely, long after VEGF-A expression ceased. These findings raise the possibility that similar, abnormal lymphatics develop in other pathologies in which VEGF-A is overexpressed, e.g., malignant tumors and chronic inflammation

    Disease-associated XMRV sequences are consistent with laboratory contamination.

    Get PDF
    BACKGROUND: Xenotropic murine leukaemia viruses (MLV-X) are endogenous gammaretroviruses that infect cells from many species, including humans. Xenotropic murine leukaemia virus-related virus (XMRV) is a retrovirus that has been the subject of intense debate since its detection in samples from humans with prostate cancer (PC) and chronic fatigue syndrome (CFS). Controversy has arisen from the failure of some studies to detect XMRV in PC or CFS patients and from inconsistent detection of XMRV in healthy controls. RESULTS: Here we demonstrate that Taqman PCR primers previously described as XMRV-specific can amplify common murine endogenous viral sequences from mouse suggesting that mouse DNA can contaminate patient samples and confound specific XMRV detection. To consider the provenance of XMRV we sequenced XMRV from the cell line 22Rv1, which is infected with an MLV-X that is indistinguishable from patient derived XMRV. Bayesian phylogenies clearly show that XMRV sequences reportedly derived from unlinked patients form a monophyletic clade with interspersed 22Rv1 clones (posterior probability >0.99). The cell line-derived sequences are ancestral to the patient-derived sequences (posterior probability >0.99). Furthermore, pol sequences apparently amplified from PC patient material (VP29 and VP184) are recombinants of XMRV and Moloney MLV (MoMLV) a virus with an envelope that lacks tropism for human cells. Considering the diversity of XMRV we show that the mean pairwise genetic distance among env and pol 22Rv1-derived sequences exceeds that of patient-associated sequences (Wilcoxon rank sum test: p = 0.005 and p < 0.001 for pol and env, respectively). Thus XMRV sequences acquire diversity in a cell line but not in patient samples. These observations are difficult to reconcile with the hypothesis that published XMRV sequences are related by a process of infectious transmission. CONCLUSIONS: We provide several independent lines of evidence that XMRV detected by sensitive PCR methods in patient samples is the likely result of PCR contamination with mouse DNA and that the described clones of XMRV arose from the tumour cell line 22Rv1, which was probably infected with XMRV during xenografting in mice. We propose that XMRV might not be a genuine human pathogen

    Measuring Patient Compliance With Remote Monitoring Following Discharge From Hospital After Major Surgery (DREAMPath): Protocol for a Prospective Observational Study

    Get PDF
    BACKGROUND: The incidence of major surgery is on the rise globally, and more than 20% of patients are readmitted to hospital following discharge from hospital. During their hospital stay, patients are monitored for early detection of clinical deterioration, which includes regularly measuring physiological parameters such as blood pressure, heart rate, respiratory rate, temperature, and pulse oximetry. This monitoring ceases upon hospital discharge, as patients are deemed clinically stable. Monitoring after discharge is relevant to detect adverse events occurring in the home setting and can be made possible through the development of digital technologies and mobile networks. Smartwatches and other technological devices allow patients to self-measure physiological parameters in the home setting, and Bluetooth connectivity can facilitate the automatic collection and transfer of this data to a secure server with minimal input from the patient. OBJECTIVE: This paper presents the protocol for the DREAMPath (Domiciliary Recovery After Medicalization Pathway) study, which aims to measure compliance with a multidevice remote monitoring kit after discharge from hospital following major surgery. METHODS: DREAMPath is a single-center, prospective, observational, cohort study, comprising 30 patients undergoing major intracavity surgery. The primary outcome is to assess patient compliance with wearable and interactive smart technology in the first 30 days following discharge from hospital after major surgery. Secondary outcomes will explore the relation between unplanned health care events and physiological data collected in the study, as well as to explore a similar relationship with daily patient-reported outcome measures (Quality of Recovery-15 score). Secondary outcomes will be analyzed using appropriate regression methods. Cardiopulmonary exercise testing data will also be collected to assess correlations with wearable device data. RESULTS: Recruitment was halted due to COVID-19 restrictions and will progress once research staff are back from redeployment. We expect that the study will be completed in the first quarter of 2022. CONCLUSIONS: Digital health solutions have been recently made possible due to technological advances, but urgency in rollout has been expedited due to COVID-19. The DREAMPath study will inform readers about the feasibility of remote monitoring for a patient group that is at an increased risk of acute deterioration. TRIAL REGISTRATION: ISRCTN Registry ISRCTN62293620; https://www.isrctn.com/ISRCTN62293620. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/30638
    corecore